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Abstract—It is well known that small files are often created
and accessed in pervasive computing in which information is
processed with limited resources via linking with objects as
encountered. And the Hadoop framework, as a de facto big
data processing platform though very popular in practice, cannot
effectively process the small files. In this paper, we propose
a scalable HDFS-based storage framework, named SHAstor,
to improve the throughput in processing of small-writes for
pervasive computing paradigm. Compared to the classic HDFS,
the essence of this approach is to merge the incoming small
writes into a large chunk of data, either at client side or at
server side, and then store it as a big file in the framework. As a
consequence, this could substantially reduce the number of small
files to process the pervasively gathered information. To reach this
goal, the framework takes the HDFS as the basis and adds three
extra modules for merging and indexing the small files during the
read/write operations in pervasive applications are performed.
To further facilitate this process, a new ancillary namenode
is also optionally installed to store the index table. With this
optimization, SHAstor can not only optimize the small-writes,
but also scale out with the number of datanodes to improve the
performance of pervasive applications.

Index Terms—pervasive computing, HDFS-based storage,
small write, Hadoop framework

I. INTRODUCTION

Hadoop framework as a core enabling technology for large-

scale data processing has demonstrated its advantages over

traditional approaches in terms of throughput and cost ben-

efits for many computational tasks. As a consequence, mi-

grating existing algorithms into their Hadoop representations

is becoming a promising approach to various applications.

Although this approach is attractive, the performance of the

framework for small-writes is still a great challenge as many

studies have demonstrated that small-writes are not amenable

to Hadoop [1], [2], [3], [4], [5]. Here, a small file is the file

whose size is significantly smaller than the Hadoop block size

(default 64MB in HDFS).

Pervasive computing, also known as ubiquitous computing,

is a computing paradigm where the information is processed

by linking each object as encountered in environment. Perva-

sive computing typically involves a variety of connected elec-

tronic devices to achieve everyware and ambient intelligence

via communicating information between them. The devices

in pervasive computing usually have constant availability and

are completely connected, which makes it possible for the

paradigm to effectively gather the pervasive information across

different electronic devices, and then efficiently process it in

a centric or distributed fashion, for much more complex and

intelligent applications. Cloud computing due to its abundant

on-demand resources and elastic charge models provides a

unique platform to reach this goal via deploying the computing

utilities on it, such as the big data processing framework.

Given limited resources, accesses to small files are pervasive

for the connected electronic devices, and they also are often

performance critical in modern pervasive computing environ-

ments, especially with the incoming era of big data-based

pervasive applications [6].

Hadoop is not geared up to efficiently accessing small files

[4], [7], [8], [6]. Instead, it is originally designed for streaming

access of large files, completely unaware of the nature of

small files to optimize bandwidth, I/O, and CPU cycles. In

particular, when dealing with a large volume of small files,

more challenges are involved as summarized by Lin in [9].

1) Additional system information incurred by the manage-

ments of small files (e.g., metadata) may be larger than

file data itself, and cost more memory for read and write

operations as well;

2) Basic file information is typically stored in system

memory, rather than hard disks, which could use more

memory in both namenode and datanode in Hadoop

(describe later);

3) Reading through small files normally causes lots of

seeks and lots of hopping from datanode to datanode

to retrieve each small file, all of which is an inefficient

data access pattern.

More or less, these challenges have been tackled with

different extensions to Hadoop [7], [8], [6], or alternatively,

its programming paradigms [1], [2], [3], [4], [5]. However,

most of the resulted frameworks or systems are not oriented

to pervasive computing, which is loaded with small files from



different sources and in different formats. And also as per Lin

[9], these frameworks or systems are not Hadoop [9] anymore,

rendering the massive benefits of the widely deployed Hadoop-

based stack (e.g., Pig, Hive, etc) hard to achieve.

In order to solve these problems, we build SHAstor (Scal-

able HDFS-based Storage Framework) based on the Hadoop

framework to improve the throughput in the process of small

files for pervasive computing. Compared to the classic HDFS,

the essence of this framework is to merge the incoming

small writes into a large chunk of data, either at client side

or at server side, and then store it as a big target file in

the framework. As a consequence, this could substantially

reduce the number of small files. To reach this goal, the

framework takes the HDFS as the basis and adds three extra

modules for merging and indexing the small files during the

read/write operations in pervasive applications are performed.

To further facilitate this process, a new ancillary namenode is

also installed to store the index table. With this optimization,

SHAstor can not only optimize the small-writes, but also scale

out with the number of datanodes to improve the performance.

We organize the paper as follows: in Section II, we sur-

vey some related work in the optimization of the Hadoop

framework with respect to the small-write efficiency, and

compare with our in-progress work. After that, we describe the

design of SHAstor in Section III, including some background

knowledge regarding the traditional Hadoop framework and

the structure of SHAstor. We conduct performance studies to

validate our optimizations in Section IV, and remarks the paper

with some discussions on on-going work in the last section.

II. RELATED WORK

Optimizing HDFS in special and Hadoop in general for

small file processing and storage is an intensively studied

area [10], [7], [11], [12]. The main idea in these studies is

to merge or combine the small files into fewer large files and

develop different mechanisms and strategies to accommodate

their metadata and index files. The efforts are roughly made

from either inside the Hadoop community or from outside.

As inside the community, HAdoop Archive (HAR) [13] and

Sequence File [14] are two most recent progresses in this

aspect. HAR is designed to reduce the memory consumption

by packing the small files into data blocks. However, it does

not support the appending operation and also suffers from the

low access performance due to an extra index file access.

Instead, SequenceFile stores the data in a form of binary

key-value pair, where the key is file name and the value is

file contents. As such, it can act as a container for small

files, with compression and de-compression supports inside.

As with HAR, SequenceFile also bears some demerits. It

only supports appending operation and lacks the mechanism

to update and delete a particular key. Also, it suffers while

performing random read operation due to its unsorted files in

key. Our design needs to overcome the issues of both methods.

In addition to the efforts inside the community, there are

also some other works for the same purpose outside the com-

munity. As we summarized, they either extended the existing

Hadoop framework [7], [8] or developed new programming

paradigms [1], [2], [3], [4], [5]. However, most of the resulted

systems are not Hadoop [9] anymore, and also fail to suite

for the pervasive computing, which is loaded with small files

from different devices.

Sethia et al. [12] addressed this issue in their most recent

publication, where an optimized mapfile-based storage for

small files is proposed with an attempt to reduce internal frag-

mentation in data blocks, and in turn the memory consumption.

In contrast, Lyu et al. [7] tackled the small-file problem from

a different angle. They introduced an optimized algorithm by

considering the sizes of small files, and generating a map

record for each of them during the course of merging into large

files, when prefetching and caching mechanisms are applied

to enhance the access efficiency. Our work is different from

theirs as we adopted different design strategies with a goal to

maximize the small-write efficiency in scale-out manner for

pervasive computing.

III. SHASTOR DESIGN

In this section, we first describing some preliminary regard-

ing the Hadoop framework, and the characteristics of infor-

mation processing in pervasive computing, and then introduce

our proposed SHAstor structure, and show how its components

are coordinated each other to improve the efficiency of small-

writes in pervasive computing.

A. Preliminary

HDFS is a distributed file system in Hadoop framework

designed for storing very large files with streaming data access

patterns. It runs on clusters of commodity hardware with

highly fault-tolerant performance. A HDFS cluster has two

types of node operating in a master-work fashion: a namenode

(the master) and a plurality of datanodes (workers). The

namenode is the central control of the cluster, managing the

file system namespace and maintaining the file system tree

and the metadata for all the files and directories in the tree.

The tree structure is built in the namenode’s memory, where

it is used to regulate the flow of information for all read and

write operations issued by the clients. In this structure, every

directory, file, and block in HDFS is represented as an object

in memory in the namenode. As such, the optimization is clear

that one can reduce the namenode memory footprint, start-up

time and network impact by minimizing the number of small

files on the cluster.

The forms of data gathered across different devices in

pervasive computing are usually multi-sources, heterogeneous

and small in sizes since the types of the devices are often

different and diverse, and their compute resources are fairly

limited. As such, for ambient intelligence, it makes sense

that deploying big-data frameworks to process the gathered

massive data from the devices, and then in turn to direct

the devices to react the activities with more intelligence for

a certain purpose. To this end, it requires the framework

to have the capability of efficiently dealing with enormous

quantify of small files in different formats. As shown in
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Fig. 1. SHAstor structure design

[15], this handling is dominated by the read operations to the

files in the subsequent accesses, and thus, the performance

of initial write operations, together with the efficiency of

the components to support the subsequent read operations,

are particularly important to the ambient intelligence of the

pervasive computing.

B. SHAstor Structure

By following the arguments above, we design SHAstor, a

HDFS-based storage framework, to reduce the number of files

by merging small size files. The heterogeneous data across

different devices could be unified either into an ASCII-hex

format that can convey binary information or into an archive

file format that is indexable. As such, the files with different

formats can be collectively merged.

As files are merged, the index information of the merged

files is stored either in the selected datanodes or in an assis-

tant namenode for subsequent accesses. With this approach,

SHAstor can reduce the number of files so that not only

the frequency of storing small files, but also the frequency

of managing blocks in namenodes are also decreased, im-

proving, improving the speeds of read and write operations,

accordingly. Moreover, when computing MapReduce tasks, the

reduction of Map tasks can also decrease the memory footprint

of the computation, and hence, the system performance can be

significantly improved by using SHAstor instead of HDFS.

To facilitate the merging process, SHAstor adds one as-

sistant namenode and three new modules to HDFS, that is,

Small-file Merging Module, Small-file Index Module and Index

Management Module, which are organized as shown in Fig.

1.

The Small-File Merging Module is designed to merge the

small files at either the client side or or the server side, based

on whether or not the data requests by users are continuous.

With this module, SHAstor not only minimizes the memory

footprint for storing small files in the namenode, but also

reduces the time spent on transferring data,Therefore, this

module can also support large quantity of data transfers.

The Small-File Index Module is designed to build up the

index information for small files during the process of file

merging at the client side, or files appending at the HDFS

side. This module can improve the speed of reading and

writing small files, and reduce the memory footprint in both

the namenodes and datanodes, no matter where the index

information is stored, either in the datanodes or in the assistant

namenode.

The Index Management Module is used to select a datanode

to insert the index information regarding the merged small

files before merging the small files. The assistant namenode

could be an idle computer, and thus it can be used to store the

index information of small files if sufficient free resources are

available.

C. Small File Merging Module

The Small-File Merging Module is further divided into two

processes based on whether or not the data requests by users

are continuous. If the requested data is continuous, the file

merging process will be happened at the client side. Otherwise,

the client side will merge the small files by appending them

to existed files in HDFS in order to reduce the total number

of files.

a) File merging at client side: This process is to merge

the small files in the memory of the client devices. During

the merging process, the index information of the small files

is inserted into the index module, along with the small files’

offsets in the target file. Additionally, the index information of

the merged small files will be saved at the selected datanodes

or the assistant namenode. When the total number of the small

files or the size of the target file reaches a certain value, the

client device will send a data input request to the namenode,

so that the basic information of the target file and the index

information of the merged small files will be written into

HDFS.

b) File merging at server side: When a user uploads

many separated small files, SHAstor will build an index for

each client device to address the problem that more memory

is needed by both the namenodes and the datanodes to handle

the large number of small files. Specifically, before starting

the upload of the first file, the client device checks the

index module to decide whether to create a new data block

for merging or looking for an existing (not full) data block

for appending. The first file uploaded by the client device

is processed as a regular file, and the subsequent files are

appended to the first one, hence, the small files are merged

at the server. As with before, during this process, both the

index information of the merged small files (e.g., offsets in

the target file) should be stored in the index module. Once

the total number of merged files or the size of the data block

reaches a certain value, a new data block will be created for

further small writes.

D. Small File Index Module

There are two key issues in design of the index module for

efficient small writes. First, we should determine the index



TABLE I
DATA STRUCTURE OF SMALL FILE INDEX MODULE

Name Type Instruction

Filename String The name of small file

Filesize int The size of small file

targetfile name String The name of target file in HDFS

targetfile size int The size of target file in HDFS

HDFS path String The path of target file in HDFS

target file offset int the small file’s offset in target file

can use int Whether the small file is available

time long File uploaded time

information for the merged small files, and design the data

structures used by the module to manage the information.

Second, depending on the workload distribution, we also need

to select a vantage location to store the index table.

a) Module Container: SHAstor saves the data structure

of the index module as key/value pairs in a container, where

the key is the name of the small file, and the value includes

the size of the small file, the name, size, the path of the target

file in HDFS, the small file’s offset in the target file, and

as well as whether or not the small file is available. In the

design, SHAstor chooses HashMap to manage the key/value

pairs, because in SHAstor, there is large quantity of client

devices who may merge the small files with enough memory,

and HashMap is good at inserting and searching operations in

high frequency. The hash function is shown as below, and we

use this function to store the key/value pair as shown in Fig.

2.

An array with a large range of index is used to store the

key/value pairs, and each string-type hashcode of a key is

reflected by the value of the following function, and this value

is also the index of the array.

private static int Hash(int h) {
h+ = (h << 9);
h= (h >>> 14);
h+ = (h << 4);
h= (h >>> 10);

return h; }

b) Physical Location: This module can be installed at

either the assistant namenode (if available) or a datanode. In

order to select an appropriate datanode, SHAstor first gets a

string of the client device’s IP address followed by the file

name, and then calculates the hashcode of the string, which

is further modulo-ed by the number of datanodes. Finally,

SHAstor selects the datanode whose number is equal to the

remainder.

E. Read, Search, Insertion and Deletion

There are four major operations on small files: Insert,

Search, Read and Delete, which are implemented via the

accesses to the index table. With these operations, one can

retrieve the original merged small files from the target file.

a) Insert:: There are several step for insertion 1) Use

the name of the small file as the key value to calculate the

Fig. 2. Structure of HashMap

string type hashcode; 2) Then, use the hash function and the

hashcode to calculate the hash value as the array index; 3)

Finally, store the key/value pair of the small file into the array

indexed by the hash value.

b) Search:: The first three steps are the same as those in

the insert process. After that, compare the Key value from the

array with the small file name. If they are equal, the value has

been found, and use this value to locate the small file in the

target file. Otherwise, there is no such small file in the target

file.

c) Single file reading: The client device first sends a

search request to the namenode to obtain the basic information

of the small files as shown in Table I. Then, the client device

sends a read request to the namenode to locate the target file.

If the target file is found, then the namenode returns the block

number and its hosting datanode; otherwise, it returns an error

code. After obtaining the merged file’s location, the client

device connects the hosting datanode via socket to read the

requested file block by moving the offset to the corresponding

location in the target file.

d) Batch files reading: The batch files is referred to a

sequence of files with continuous file numbers that are saved

together in the target file. As with the single file reading, for

the batch file reading the client device first sends a search

request to the namenode for the basic information of the small

file, then, uses this information to locate the small files in the

target file. Once the client device obtains the first and last

files’ names and offsets, it can read all the files in between.

After reading these small files, the client device uses the basic

information of each small file to separately identify its block

contents.

e) Delete:: The client device first sends a search request

to the index module. If the file does not exist, the module

returns a no-file code; otherwise, the can use value in the

key/value pair will be set to 0, which indicates the file has

been deleted. Then in the next time when this file is requested

again, a no-file code could be sent to the client device.



(a) 127KB files

(b) 63KB files

10000 20000 30000 40000 50000

Group1(GB) 1.2 2.4 3.6 4.8 6.0
Group2(GB) 0.6 1.2 1.8 2.4 3.0

Fig. 3. Write performance comparisons between different input file sizes:
127KB vs. 63KB

IV. PERFORMANCE EVALUATION

We set up a testbed to evaluate the performance of SHAstor.

The testbed consists of two physical machines that are con-

nected via a network with 100MB bandwidth, each hosting

two virtual machines (VM) (CPU 2.66GHz/mem 1GB/Disk

80GB) created by Windows VMWare. Moreover, we also

install Ubuntu 9.04 on each node in the cluster, and whereby

the Hadoop (0.20.2) is deployed with the support of Java

environment (Java-6-openjdk).

a) File Writing: The files used in the test are simulated

records of telephone GPS information, a typical kind of

pervasive information. There are two sizes of files, one is

63KB, having 720 records, and the other is 127KB, having

1440 records. We compare the read performance between

HDFS and SHAstor by setting the total number of files

between 10000 and 50000 as shown in the table of Fig. 3.

The number of files merged at the client side is set to 100,

200, 500, and 1000, respectively. The performance compar-

ison of uploading 127KB files (Fig. 3(a)), and 63KB files

(Fig. 3(b)). According to this figure, compare to HDFS, the

performance in SHAstor has been improved 100% when file

size is 127KB and reaches the best when merging 500 small

files, and 230% when file size is 63KB and reaches the best

when merging 1000 small files.

b) File Reading: From the files written in the previous

test, we randomly read 33.3% of them, whose total sizes are

shown in the table of Fig. 4. The performance comparison

of reading 127KB files and 63KB files is also shown in

Fig. 4. From this figure, one can observe that the file reading

(a) 127KB files

(b) 63KB files

3000 6000 9000 12000 15000

Group1(GB) 0.4 0.8 1.2 1.6 2.0
Group2(GB) 0.2 0.4 0.6 0.8 1.0

Fig. 4. Read performance comparisons between different input file sizes:
127KB vs. 63KB

(a) Namenode

(b) Datanode

Fig. 5. Memory footprints in namenode and datanode.

performance is kept the same in both HDFS and SHAstor,

demonstrating the efficiency of SHAstor in handling the small-

writes.

c) Memory footprints in namenode and datanode: We

test the memory footprints in both namenodes (Fig. 5(a))

and datanodes (Fig. 5(b)). From these figures, the memory

footprints have been reduced 63.2% for the namenodes and

38.7% for the datanodes, respectively.



#. of rec.(M) 50 100 200 300 500 800 1000
Size(MB) 46 92 184 276 460 736 920

Fig. 6. SHAstor scalability test

d) SHAstor Scalability: Given the number of records in

a file is increased from 50M to 1000M as shown in Fig.

6, we also compare the time overhead between HDFS and

SHAstor as the the number of compute nodes is varied from 1

to 4 (Fig. 6). Our results demonstrate that SHAstor can exhibit

approximately linear scalability as the number of nodes and

the size of file are increased, a good property to facilitate a

large amount of small-writes.

V. REMARKS AND ON-GOING WORK

In this paper, we described a scalable storage framework

based on HDFS, called SHAstor, for small-write efficiency

in pervasive computing. SHAstor achieves this efficiency by

merging small files into a large target file and facilitating

the insertion, search, read and deletion operations with the

aid of designed components. To evaluate SHAstor, we have

prototyped it and made some experiments by using the typical

GPS datasets in pervasive computing. Our preliminary results

demonstrated that SHAstor is not only efficient but also scal-

able for small writes, having potentials to realize the ambient

intelligence.

Although SHAstor has exhibited some promising potentials,

it is still in its early stage and has much room left to be

further improved. Currently, we are working on the algorithms

and mechanisms for data heterogeneity that would allow the

data files from different devices and in different formats to

be processed in a unified way. The challenge of this work

is to strike a good balance between the benefits of the small

writes and the costs in handling the different formats. Another

effort we are making in progress is to implement the update

operation with respect to the merged files. Although the update

operation is not that often, compared to its read counterpart,

in pervasive computing, it is still useful in certain cases as

shown in [15]. To support the update operation, the current

components of SHAstor need to be substantially improved

to record and index the update operations. In the long run,

we plan to combine SHAstor with our hitchhike technique,

which is an I/O scheduler optimization enabling writeback

for small synchronous writes [16], and then integrate them

into a real pervasive computing platform to provide diverse

electronic devices with an efficient remote control for ambient

intelligence in pervasive computing.
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